Unit 3 Vector-valued Functions

3.1 Curves in Space and Their Tangents

When a particle moves through space during a time interval I, its coordinates can be written as:

$$
x=f(t), \quad y=g(t), \quad z=h(t), \quad t \in I .
$$

and in vector form as

$$
\mathbf{r}(t)=\overrightarrow{O P}=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

which is the particle's position vector.

A vector-valued function or vector function, is a rule that assigns a vector in space. EXAMPLE 1 Graph the vector function

$$
\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k} .
$$

Solution The vector function

$$
\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}
$$

is defined for all real values of t. The curve traced by \mathbf{r} winds around the circular cylinder $x^{2}+y^{2}=1$.

The curve rises as the \mathbf{k}-component $z=t$ increases.
The equations

$$
x=\cos t, \quad y=\sin t, \quad z=t
$$

parametrize the helix.
The upper half of the helix in Example 1.
DEFINITIONS: If \mathbf{r} is the position vector of a particle moving along a smooth curve in space, then

1. Velocity is the derivative of position: $\mathbf{v}=\frac{d \mathbf{r}}{d t}$.
2. Speed is the magnitude of velocity: \quad Speed $=|\mathbf{v}|$.
3. Acceleration is the derivative of velocity: $\quad \mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t^{2}}$.
4. The unit vector $\mathbf{v} /|\mathbf{v}|$ is the direction of motion at time t.

EXAMPLE 2

Find the velocity, speed, and acceleration of a particle whose motion in space is given by the position vector $\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+5 \cos ^{2} t \mathbf{k}$, at $\mathbf{t}=7 \pi / 4$.

Solution The velocity and acceleration vectors at time t are

$$
\begin{aligned}
\mathbf{v}(t)=\mathbf{r}^{\prime}(t) & =-2 \sin t \mathbf{i}+2 \cos t \mathbf{j}-10 \cos t \sin t \mathbf{k} \\
& =-2 \sin t \mathbf{i}+2 \cos t \mathbf{j}-5 \sin 2 t \mathbf{k}, \\
\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t) & =-2 \cos t \mathbf{i}-2 \sin t \mathbf{j}-10 \cos 2 t \mathbf{k},
\end{aligned}
$$

and the speed is

$$
|\mathbf{v}(t)|=\sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}+(-5 \sin 2 t)^{2}}=\sqrt{4+25 \sin ^{2} 2 t} .
$$

When $t=7 \pi / 4$, we have
$\mathbf{v}\left(\frac{7 \pi}{4}\right)=\sqrt{2} \mathbf{i}+\sqrt{2} \mathbf{j}+5 \mathbf{k}, \quad \mathbf{a}\left(\frac{7 \pi}{4}\right)=-\sqrt{2} \mathbf{i}+\sqrt{2} \mathbf{j}, \quad\left|\mathbf{v}\left(\frac{7 \pi}{4}\right)\right|=\sqrt{29}$.

Differentiation Rules for Vector Functions

Let \mathbf{u} and \mathbf{v} be differentiable vector functions of t, \mathbf{C} a constant vector, c any scalar, and f any differentiable scalar function.

1. Constant Function Rule: $\quad \frac{d}{d t} \mathbf{C}=\mathbf{0}$
2. Scalar Multiple Rules: $\quad \frac{d}{d t}[c \mathbf{u}(t)]=c \mathbf{u}^{\prime}(t)$

$$
\frac{d}{d t}[f(t) \mathbf{u}(t)]=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)
$$

3. Sum Rule:

$$
\frac{d}{d t}[\mathbf{u}(t)+\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)
$$

4. Difference Rule:

$$
\frac{d}{d t}[\mathbf{u}(t)-\mathbf{v}(t)]=\mathbf{u}^{\prime}(t)-\mathbf{v}^{\prime}(t)
$$

5. Dot Product Rule: $\quad \frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)$
6. Cross Product Rule:

$$
\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)
$$

7. Chain Rule:

$$
\frac{d}{d t}[\mathbf{u}(f(t))]=f^{\prime}(t) \mathbf{u}^{\prime}(f(t))
$$

Exercises 13.1

In Exercises 1-4, $\mathbf{r}(\mathrm{t})$ is the position of a particle in the $x y$ plane at time t. Find an equation in x and y whose graph is the path of the particle. Then find the particle's velocity and acceleration vectors at the given value of t.

1. $\mathbf{r}(t)=(t+1) \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}, \quad t=1$
2. $\mathbf{r}(t)=\frac{t}{t+1} \mathbf{i}+\frac{1}{t} \mathbf{j}, \quad t=-1 / 2$
3. $\mathbf{r}(t)=e^{t} \mathbf{i}+\frac{2}{9} e^{2 t} \mathbf{j}, \quad t=\ln 3$
4. $\mathbf{r}(t)=(\cos 2 t) \mathbf{i}+(3 \sin 2 t) \mathbf{j}, \quad t=0$

In Exercises 19-22, find parametric equations for the line that is tangent to the given curve at the given parameter value $t=t_{o}$.
19. $\mathbf{r}(t)=(\sin t) \mathbf{i}+\left(t^{2}-\cos t\right) \mathbf{j}+e^{t} \mathbf{k}, \quad t_{0}=0$
20. $\mathbf{r}(t)=t^{2} \mathbf{i}+(2 t-1) \mathbf{j}+t^{3} \mathbf{k}, \quad t_{0}=2$
21. $\mathbf{r}(t)=\ln t \mathbf{i}+\frac{t-1}{t+2} \mathbf{j}+t \ln t \mathbf{k}, \quad t_{0}=1$
22. $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+(\sin 2 t) \mathbf{k}, \quad t_{0}=\frac{\pi}{2}$

3.2 Unit Tangent Vector (T)

We already know the velocity vector $\mathrm{v}=d \mathbf{r} / d t$ is tangent to the curve $\mathbf{r}(t)$ and that the vector

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

is a unit tangent vector.
EXAMPLE 1 Find the unit tangent vector of the curve

$$
\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}+t^{2} \mathbf{k}
$$

Solution

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=-(3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}+2 t \mathbf{k}
$$

and

$$
|\mathbf{v}|=\sqrt{9+4 t^{2}}
$$

Thus,

$$
\mathbf{T}=\frac{\mathbf{v}}{|\mathbf{v}|}=-\frac{3 \sin t}{\sqrt{9+4 t^{2}}} \mathbf{i}+\frac{3 \cos t}{\sqrt{9+4 t^{2}}} \mathbf{j}+\frac{2 t}{\sqrt{9+4 t^{2}}} \mathbf{k} .
$$

3.3 Arc Length Along a Space Curve

The length of a smooth curve $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$, that is traced exactly once as t increases from $t=a$ to $t=b$, is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

EXAMPLE A glider is soaring upward along the helix $\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+c t \mathbf{k}$.
How long is the glider's path from $t=0$ to $t=2 \pi$?
Solution $\quad \mathbf{r}^{\prime}(t)=-a \sin t \mathbf{i}+a \cos t \mathbf{j}+c \mathbf{k} ;$

$$
L=\int_{0}^{2 \pi} \sqrt{(-a \sin t)^{2}+(a \cos t)^{2}+c^{2}} \quad d t=\left.\sqrt{a^{2}+c^{2}} t\right|_{0} ^{2 \pi}=2 \pi \sqrt{a^{2}+c^{2}}
$$

Exercises 13.3

Finding Tangent Vectors and Lengths

In Exercises 1-8, find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.

1. $\mathbf{r}(t)=(2 \cos t) \mathbf{i}+(2 \sin t) \mathbf{j}+\sqrt{5} t \mathbf{k}, \quad 0 \leq t \leq \pi$
2. $\mathbf{r}(t)=(6 \sin 2 t) \mathbf{i}+(6 \cos 2 t) \mathbf{j}+5 t \mathbf{k}, \quad 0 \leq t \leq \pi$
3. $\mathbf{r}(t)=t \mathbf{i}+(2 / 3) t^{3 / 2} \mathbf{k}, \quad 0 \leq t \leq 8$
4. $\mathbf{r}(t)=(2+t) \mathbf{i}-(t+1) \mathbf{j}+t \mathbf{k}, \quad 0 \leq t \leq 3$
5. $\mathbf{r}(t)=\left(\cos ^{3} t\right) \mathbf{j}+\left(\sin ^{3} t\right) \mathbf{k}, \quad 0 \leq t \leq \pi / 2$
6. $\mathbf{r}(t)=6 t^{3} \mathbf{i}-2 t^{3} \mathbf{j}-3 t^{3} \mathbf{k}, \quad 1 \leq t \leq 2$
7. $\mathbf{r}(t)=(t \cos t) \mathbf{i}+(t \sin t) \mathbf{j}+(2 \sqrt{2} / 3) t^{3 / 2} \mathbf{k}, \quad 0 \leq t \leq \pi$
8. $\mathbf{r}(t)=(t \sin t+\cos t) \mathbf{i}+(t \cos t-\sin t) \mathbf{j}, \quad \sqrt{2} \leq t \leq 2$
9. Find the point on the curve

$$
\mathbf{r}(t)=(5 \sin t) \mathbf{i}+(5 \cos t) \mathbf{j}+12 t \mathbf{k}
$$

at a distance 26π units along the curve from the point $(0,5,0)$ in the direction of increasing arc length.
10. Find the point on the curve

$$
\mathbf{r}(t)=(12 \sin t) \mathbf{i}-(12 \cos t) \mathbf{j}+5 t \mathbf{k}
$$

at a distance 13π units along the curve from the point $(0,-12,0)$ in the direction opposite to the direction of increasing arc length.

3.4 Unit Normal Vector (N)

If $\mathbf{r}(t)$ is a smooth curve, then the principal unit normal is

$$
\mathbf{N}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|},
$$

where $\mathbf{T}=\mathbf{v} /|\mathbf{v}|$ is the unit tangent vector.
EXAMPLE Find \mathbf{T} and \mathbf{N} for the circular motion

$$
\mathbf{r}(t)=(\cos 2 t) \mathbf{i}+(\sin 2 t) \mathbf{j}
$$

Solution We first find \mathbf{T} :

$$
\begin{aligned}
\mathbf{v} & =-(2 \sin 2 t) \mathbf{i}+(2 \cos 2 t) \mathbf{j} \\
|\mathbf{v}| & =\sqrt{4 \sin ^{2} 2 t+4 \cos ^{2} 2 t}=2 \\
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|}=-(\sin 2 t) \mathbf{i}+(\cos 2 t) \mathbf{j}
\end{aligned}
$$

From this we find

$$
\begin{aligned}
\frac{d \mathbf{T}}{d t} & =-(2 \cos 2 t) \mathbf{i}-(2 \sin 2 t) \mathbf{j} \\
\left|\frac{d \mathbf{T}}{d t}\right| & =\sqrt{4 \cos ^{2} 2 t+4 \sin ^{2} 2 t}=2
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{N} & =\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|} \\
& =-(\cos 2 t) \mathbf{i}-(\sin 2 t) \mathbf{j} .
\end{aligned}
$$

Notice that $\mathbf{T} \cdot \mathbf{N}=0$, verifying that \mathbf{N} is orthogonal to \mathbf{T}. Notice too, that for the circular motion here, \mathbf{N} points from $\mathbf{r}(\mathrm{t})$ towards the circle's center at the origin.

Exercises 13.4

Find \mathbf{T}, \mathbf{N}, and κ for the space curves in Exercises 9-16.
9. $\mathbf{r}(t)=(3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}+4 t \mathbf{k}$
10. $\mathbf{r}(t)=(\cos t+t \sin t) \mathbf{i}+(\sin t-t \cos t) \mathbf{j}+3 \mathbf{k}$
11. $\mathbf{r}(t)=\left(e^{t} \cos t\right) \mathbf{i}+\left(e^{t} \sin t\right) \mathbf{j}+2 \mathbf{k}$
12. $\mathbf{r}(t)=(6 \sin 2 t) \mathbf{i}+(6 \cos 2 t) \mathbf{j}+5 t \mathbf{k}$
13. $\mathbf{r}(t)=\left(t^{3} / 3\right) \mathbf{i}+\left(t^{2} / 2\right) \mathbf{j}, \quad t>0$
14. $\mathbf{r}(t)=\left(\cos ^{3} t\right) \mathbf{i}+\left(\sin ^{3} t\right) \mathbf{j}, \quad 0<t<\pi / 2$
15. $\mathbf{r}(t)=t \mathbf{i}+(a \cosh (t / a)) \mathbf{j}, \quad a>0$
16. $\mathbf{r}(t)=(\cosh t) \mathbf{i}-(\sinh t) \mathbf{j}+t \mathbf{k}$

3.5 Directional Derivatives

If $f(x, y)$ is a differentiable function, defined in a region R , and $\mathbf{u}=u_{1} \mathbf{i}+u_{\mathbf{2}} \mathbf{j}$ is a unit vector, then:

1- The gradient vector (gradient) of $f(x, y)$ at a point $P_{0}\left(x_{0}, y_{0}\right)$ is the vector

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

obtained by evaluating the partial derivatives of f at P_{0}.
2- The Directional Derivative is

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f \| \mathbf{u}| \cos \theta=|\nabla f| \cos \theta
$$

Note: $\left(D_{\mathbf{u}} f\right)$ is The derivative of f in the direction of \mathbf{u}.
EXAMPLE 1 Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$.

Solution The direction of \mathbf{v} is the unit vector obtained by dividing \mathbf{v} by its length:

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{v}}{5}=\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j} .
$$

The partial derivatives of f are everywhere continuous and at $(2,0)$ are given by

$$
\begin{aligned}
& f_{x}(2,0)=\left(e^{y}-y \sin (x y)\right)_{(2,0)}=e^{0}-0=1 \\
& f_{y}(2,0)=\left(x e^{y}-x \sin (x y)\right)_{(2,0)}=2 e^{0}-2 \cdot 0=2
\end{aligned}
$$

The gradient of f at $(2,0)$ is

$$
\left.\nabla f\right|_{(2,0)}=f_{x}(2,0) \mathbf{i}+f_{y}(2,0) \mathbf{j}=\mathbf{i}+2 \mathbf{j}
$$

The derivative of f at $(2,0)$ in the direction of \mathbf{v} is therefore

$$
\begin{aligned}
\left.\left(D_{\mathbf{u}} f\right)\right|_{(2,0)} & =\left.\nabla f\right|_{(2,0)} \cdot \mathbf{u} \\
& =(\mathbf{i}+2 \mathbf{j}) \cdot\left(\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j}\right)=\frac{3}{5}-\frac{8}{5}=-1 .
\end{aligned}
$$

Properties of the directional derivative $\mathrm{D}_{\mathbf{u}} f$:
1- The function f increases most rapidly (greatest ascent) in the direction of ∇f. The derivative in this direction is $|\nabla f|$.
2- The function f decreases most rapidly (greatest descent) in the direction of $-\nabla f$. The derivative in this direction is $-|\nabla f|$.
3- Any direction \mathbf{u} orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f.

EXAMPLE 2 Find the directions in which $f(x, y)=\left(x^{2} / 2\right)+\left(y^{2} / 2\right)$
(a) increases most rapidly at the point $(1,1)$.
(b) decreases most rapidly at $(1,1)$.
(c) What are the directions of zero change in f at $(1,1)$? Solution
(a) The function increases most rapidly in the direction of ∇f at $(1,1)$.The gradient there is

$$
(\nabla f)_{(1,1)}=(x \mathbf{i}+y \mathbf{j})_{(1,1)}=\mathbf{i}+\mathbf{j} .
$$

Its direction is

$$
\mathbf{u}=\frac{\mathbf{i}+\mathbf{j}}{|\mathbf{i}+\mathbf{j}|}=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{(1)^{2}+(1)^{2}}}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} .
$$

(b) The function decreases most rapidly in the direction of
 $-\nabla f$ at $(1,1)$, which is

$$
-\mathbf{u}=-\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j} .
$$

(c) The directions of zero change at $(1,1)$ are the directions orthogonal to ∇f :

$$
\mathbf{n}=-\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{j} \quad \text { and } \quad-\mathbf{n}=\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j} .
$$

EXAMPLE 3

(a) Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$.
(b) In what directions does f change most rapidly at P_{0}, and what are the rates of change in these directions?
Solution (a) The direction of \mathbf{v} is obtained by dividing \mathbf{v} by its length:

$$
\begin{aligned}
|\mathbf{v}| & =\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}=\sqrt{49}=7 \\
\mathbf{u} & =\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}
\end{aligned}
$$

The partial derivatives of f at P_{0} are

$$
f_{x}=\left(3 x^{2}-y^{2}\right)_{(1,1,0)}=2, \quad f_{y}=-\left.2 x y\right|_{(1,1,0)}=-2, \quad f_{z}=-\left.1\right|_{(1,1,0)}=-1 .
$$

The gradient of f at P_{0} is

$$
\left.\nabla f\right|_{(1,1,0)}=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k} .
$$

The derivative of f at P_{0} in the direction of \mathbf{v} is therefore

$$
\begin{aligned}
\left(D_{\mathbf{u}} f\right)_{(1,1,0)} & =\left.\nabla f\right|_{(1,1,0)} \cdot \mathbf{u}=(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}) \cdot\left(\frac{2}{7} \mathbf{i}-\frac{3}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}\right) \\
& =\frac{4}{7}+\frac{6}{7}-\frac{6}{7}=\frac{4}{7} .
\end{aligned}
$$

(b) The function increases most rapidly in the direction of $\nabla f=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ and decreases most rapidly in the direction of $-\nabla f$. The rates of change in the directions are, respectively,

$$
|\nabla f|=\sqrt{(2)^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{9}=3 \quad \text { and } \quad-|\nabla f|=-3
$$

Exercises 14.5

In Exercises $1-6$, find the gradient of the function at the given point. Then sketch the gradient together with the level curve that passes through the point.

1. $f(x, y)=y-x,(2,1)$
2. $f(x, y)=\ln \left(x^{2}+y^{2}\right),(1,1)$
3. $g(x, y)=x y^{2},(2,-1)$
4. $g(x, y)=\frac{x^{2}}{2}-\frac{y^{2}}{2},(\sqrt{2}, 1)$
5. $f(x, y)=\sqrt{2 x+3 y}, \quad(-1,2)$
6. $f(x, y)=\tan ^{-1} \frac{\sqrt{x}}{y},(4,-2)$

In Exercises $7-10$, find ∇f at the given point.
7. $f(x, y, z)=x^{2}+y^{2}-2 z^{2}+z \ln x,(1,1,1)$
8. $f(x, y, z)=2 z^{3}-3\left(x^{2}+y^{2}\right) z+\tan ^{-1} x z,(1,1,1)$
9. $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}+\ln (x y z), \quad(-1,2,-2)$
10. $f(x, y, z)=e^{x+y} \cos z+(y+1) \sin ^{-1} x,(0,0, \pi / 6)$

In Exercises 11-18, find the derivative of the function at P_{0} in the direction of \mathbf{u}.
11. $f(x, y)=2 x y-3 y^{2}, \quad P_{0}(5,5), \quad \mathbf{u}=4 \mathbf{i}+3 \mathbf{j}$
12. $f(x, y)=2 x^{2}+y^{2}, \quad P_{0}(-1,1), \quad \mathbf{u}=3 \mathbf{i}-4 \mathbf{j}$
13. $g(x, y)=\frac{x-y}{x y+2}, \quad P_{0}(1,-1), \quad \mathbf{u}=12 \mathbf{i}+5 \mathbf{j}$
14. $h(x, y)=\tan ^{-1}(y / x)+\sqrt{3} \sin ^{-1}(x y / 2), \quad P_{0}(1,1), \mathbf{u}=3 \mathbf{i}-2 \mathbf{j}$
15. $f(x, y, z)=x y+y z+z x, \quad P_{0}(1,-1,2), \quad \mathbf{u}=3 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$
16. $f(x, y, z)=x^{2}+2 y^{2}-3 z^{2}, \quad P_{0}(1,1,1), \quad \mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
17. $g(x, y, z)=3 e^{x} \cos y z, \quad P_{0}(0,0,0), \quad \mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$
18. $h(x, y, z)=\cos x y+e^{y z}+\ln z x, \quad P_{0}(1,0,1 / 2), \mathbf{u}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$

In Exercises 19-24, find the directions in which the functions increase and decrease most rapidly at P_{0}. Then find the derivatives of the functions in these directions.
19. $f(x, y)=x^{2}+x y+y^{2}, \quad P_{0}(-1,1)$
20. $f(x, y)=x^{2} y+e^{x y} \sin y, \quad P_{0}(1,0)$
21. $f(x, y, z)=(x / y)-y z, \quad P_{0}(4,1,1)$
22. $g(x, y, z)=x e^{y}+z^{2}, \quad P_{0}(1, \ln 2,1 / 2)$
23. $f(x, y, z)=\ln x y+\ln y z+\ln x z, \quad P_{0}(1,1,1)$
24. $h(x, y, z)=\ln \left(x^{2}+y^{2}-1\right)+y+6 z, \quad P_{0}(1,1,0)$
29. Let $f(x, y)=x^{2}-x y+y^{2}-y$. Find the directions \mathbf{u} and the values of $D_{\mathbf{u}} f(1,-1)$ for which
a. $D_{\mathbf{u}} f(1,-1)$ is largest
b. $D_{\mathrm{u}} f(1,-1)$ is smallest
c. $D_{\mathrm{u}} f(1,-1)=0$
d. $D_{\mathrm{u}} f(1,-1)=4$
e. $D_{\mathbf{u}} f(1,-1)=-3$
30. Let $f(x, y)=\frac{(x-y)}{(x+y)}$. Find the directions \mathbf{u} and the values of $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)$ for which
a. $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)$ is largest
b. $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)$ is smallest
c. $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)=0$
d. $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)=-2$
e. $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)=1$
31. In what direction is the derivative of $f(x, y)=x y+y^{2}$ at $P(3,2)$ equal to zero?
32. In what directions is the derivative of $f(x, y)=\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)$ at $P(1,1)$ equal to zero?
33. Is there a direction \mathbf{u} in which the rate of change of $f(x, y)=x^{2}-3 x y+4 y^{2}$ at $P(1,2)$ equals 14 ? Give reasons for your answer.

3.6 Divergence and Curl of a Vector

A vector field $\mathbf{F}(x, y, z)$ is a function that assigns a vector to each point in its domain.

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

Divergence

The divergence of a vector field \mathbf{F} is the scalar function

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
$$

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in space. Find the divergence of each vector field and interpret its physical meaning. Figure 16.67 displays the vector fields.
(a) Expansion: $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
(b) Compression: $\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}-z \mathbf{k}$
(c) Rotation about z-axis: $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}$
(d) Shearing along horizontal planes: $\mathbf{F}(x, y, z)=z \mathbf{j}$

Solution
(a) $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)=3$: The gas is undergoing uniform expansion at all points.
(b) $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(-x)+\frac{\partial}{\partial y}(-y)+\frac{\partial}{\partial z}(-z)=-3$: The gas is undergoing uniform compression at all points.
(c) $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(-y)+\frac{\partial}{\partial y}(x)=0$: The gas is neither expanding nor compressing at any point.
(d) $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial y}(z)=0$: Again, the divergence is zero at all points in the domain of the velocity field, so the gas is neither expanding nor compressing at any point.

(a)

(c)

(d)

Curl

The curl of a vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is the vector field

$$
\operatorname{curl} \mathbf{F}=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
$$

The curl of \mathbf{F} is $\nabla \times \mathbf{F}$:
$\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}=\operatorname{curl} \mathbf{F}$
EXAMPLE 1 Find the curl of $\mathbf{F}=\left(x^{2}-z\right) \mathbf{i}+x e^{z} \mathbf{j}+x y \mathbf{k}$.
Solution We use Equation (3) and the determinant form, so

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}= & \nabla \times \mathbf{F} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}-z & x e^{z} & x y
\end{array}\right| \\
= & \left(\frac{\partial}{\partial y}(x y)-\frac{\partial}{\partial z}\left(x e^{z}\right)\right) \mathbf{i}-\left(\frac{\partial}{\partial x}(x y)-\frac{\partial}{\partial z}\left(x^{2}-z\right)\right) \mathbf{j} \\
& +\left(\frac{\partial}{\partial x}\left(x e^{z}\right)-\frac{\partial}{\partial y}\left(x^{2}-z\right)\right) \mathbf{k} \\
= & \left(x-x e^{z}\right) \mathbf{i}-(y+1) \mathbf{j}+\left(e^{z}-0\right) \mathbf{k} \\
= & x\left(1-e^{z}\right) \mathbf{i}-(y+1) \mathbf{j}+e^{z} \mathbf{k}
\end{aligned}
$$

EXAMPLE 2 If $\mathbf{F}=\left(x^{2} y^{3}-z^{4}\right) \mathbf{i}+4 x^{5} y^{2} z \mathbf{j}-y^{4} z^{6} \mathbf{k}$, find (a) $\operatorname{curl} \mathbf{F}$, (b) $\operatorname{div} \mathbf{F}$, and (c) $\operatorname{div}(\operatorname{curl} \mathbf{F})$.
SOLUTION (a) $\quad \operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} y^{3}-z^{4} & 4 x^{5} y^{2} z & -y^{4} z^{6}\end{array}\right|$

$$
=\left(-4 y^{3} z^{6}-4 x^{5} y^{2}\right) \mathbf{i}-4 z^{3} \mathbf{j}+\left(20 x^{4} y^{2} z-3 x^{2} y^{2}\right) \mathbf{k} .
$$

(b) $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(x^{2} y^{3}-z^{4}\right)+\frac{\partial}{\partial y}\left(4 x^{5} y^{2} z\right)+\frac{\partial}{\partial z}\left(-y^{4} z^{6}\right)=2 x y^{3}+8 x^{5} y z-6 y^{4} z^{5}$.
(c) $\operatorname{div}(\operatorname{curl} \mathbf{F})=\frac{\partial}{\partial x}\left(-4 y^{3} z^{6}-4 x^{5} y^{2}\right)+\frac{\partial}{\partial y}\left(-4 z^{3}\right)+\frac{\partial}{\partial z}\left(20 x^{4} y^{2} z-3 x^{2} y^{2}\right)$

$$
=0-20 x^{4} y^{2}+0+20 x^{4} y^{2}=0 .
$$

Exercises 9.7, page 514 (Advanced Engineering Mathematics- by Dennis G. Zill-6th ed.)
In Problems 7-16, find the curl and the divergence of the given vector field.
7. $\mathbf{F}(x, y, z)=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$
8. $\mathbf{F}(x, y, z)=10 y z \mathbf{i}+2 x^{2} z \mathbf{j}+6 x^{3} \mathbf{k}$
9. $\mathbf{F}(x, y, z)=4 x y \mathbf{i}+\left(2 x^{2}+2 y z\right) \mathbf{j}+\left(3 z^{2}+y^{2}\right) \mathbf{k}$
10. $\mathbf{F}(x, y, z)=(x-y)^{3} \mathbf{i}+e^{-y z} \mathbf{j}+x y e^{2 y} \mathbf{k}$
12. $\mathbf{F}(x, y, z)=5 y^{3} \mathbf{i}+\left(\frac{1}{2} x^{3} y^{2}-x y\right) \mathbf{j}-\left(x^{3} y z-x z\right) \mathbf{k}$
13. $\mathbf{F}(x, y, z)=x e^{-z} \mathbf{i}+4 y z^{2} \mathbf{j}+3 y e^{-z} \mathbf{k}$
14. $\mathbf{F}(x, y, z)=y z \ln x \mathbf{i}+(2 x-3 y z) \mathbf{j}+x y^{2} z^{3} \mathbf{k}$
15. $\mathbf{F}(x, y, z)=x y e^{x} \mathbf{i}-x^{3} y z e^{z} \mathbf{j}+x y^{2} e^{y} \mathbf{k}$
16. $\mathbf{F}(x, y, z)=x^{2} \sin y z \mathbf{i}+z \cos x z^{3} \mathbf{j}+y e^{5 x y} \mathbf{k}$

Solutions:

7. $\operatorname{curl} \mathbf{F}=(x-y) \mathbf{i}+(x-y) \mathbf{j} ; \quad \operatorname{div} \mathbf{F}=2 z$
8. curl $\mathbf{F}=-2 x^{2} \mathbf{i}+\left(10 y-18 x^{2}\right) \mathbf{j}+(4 x z-10 z) \mathbf{k} ; \operatorname{div} \mathbf{F}=0$
9. $\operatorname{curl} \mathbf{F}=\mathbf{0} ; \quad \operatorname{div} \mathbf{F}=4 y+8 z$
10. $\operatorname{curl} \mathbf{F}=\left(x e^{2 y}+y e^{-y z}+2 x y e^{2 y}\right) \mathbf{i}-y e^{2 y} \mathbf{j}+3(x-y)^{2} \mathbf{k} ; \quad \operatorname{div} \mathbf{F}=3(x-y)^{2}-z e^{-y z}$
11. curl $\mathbf{F}=\left(4 y^{3}-6 x z^{2}\right) \mathbf{i}+\left(2 z^{3}-3 x^{2}\right) \mathbf{k} ; \operatorname{div} \mathbf{F}=6 x y$
12. curl $\mathbf{F}=-x^{3} z \mathbf{i}+\left(3 x^{2} y z-z\right) \mathbf{j}+\left(\frac{3}{2} x^{2} y^{2}-y-15 y^{2}\right) \mathbf{k} ; \operatorname{div} \mathbf{F}=\left(x^{3} y-x\right)-\left(x^{3} y-x\right)=0$
13. curl $\mathbf{F}=\left(3 e^{-z}-8 y z\right) \mathbf{i}-x e^{-z} \mathbf{j} ;$ div $\mathbf{F}=e^{-z}+4 z^{2}-3 y e^{-z}$
14. $\operatorname{curl} \mathbf{F}=\left(2 x y z^{3}+3 y\right) \mathbf{i}+\left(y \ln x-y^{2} z^{3}\right) \mathbf{j}+(2-z \ln x) \mathbf{k} ; \quad \operatorname{div} \mathbf{F}=\frac{y z}{x}-3 z+3 x y^{2} z^{2}$
15. curl $\mathbf{F}=\left(x y^{2} e^{y}+2 x y e^{y}+x^{3} y e^{z}+x^{3} y z e^{z}\right) \mathbf{i}-y^{2} e^{y} \mathbf{j}+\left(-3 x^{2} y z e^{z}-x e^{x}\right) \mathbf{k} ; \operatorname{div} \mathbf{F}=x y e^{x}+y e^{x}-x^{3} z e^{z}$
16. $\operatorname{curl} \mathbf{F}=\left(5 x y e^{5 x y}+e^{5 x y}+3 x z^{3} \sin x z^{3}-\cos x z^{3}\right) \mathbf{i}+\left(x^{2} y \cos y z-5 y^{2} e^{5 x y}\right) \mathbf{j}$

$$
+\left(-z^{4} \sin x z^{3}-x^{2} z \cos y z\right) \mathbf{k} ; \quad \operatorname{div} \mathbf{F}=2 x \sin y z
$$

